A Carleman estimate for the linear shallow shell equation and an inverse source problem
نویسندگان
چکیده
منابع مشابه
Global Carleman estimate on a network for the wave equation and application to an inverse problem
We are interested in an inverse problem for the wave equation with potential on a starshaped network. We prove the Lipschitz stability of the inverse problem consisting in the determination of the potential on each string of the network with Neumann boundary measurements at all but one external vertices. Our main tool, proved in this article, is a global Carleman estimate for the network.
متن کاملInverse Conductivity Problem for a Parabolic Equation using a Carleman Estimate with One Observation
For the heat equation in a bounded domain we give a stability result for a smooth diffusion coefficient. The key ingredients are a global Carleman-type estimate, a Poincaré-type estimate and an energy estimate with a single observation acting on a part of the boundary.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn inverse random source problem for the Helmholtz equation
This paper is concerned with an inverse random source problem for the one-dimensional stochastic Helmholtz equation, which is to reconstruct the statistical properties of the random source function from boundary measurements of the radiating random electric field. Although the emphasis of the paper is on the inverse problem, we adapt a computationally more efficient approach to study the soluti...
متن کاملA global Carleman estimate in a transmission wave equation and application to a one-measurement inverse problem
We consider a transmission wave equation in two embedded domains in R, where the speed is a1 > 0 in the inner domain and a2 > 0 in the outer domain. We prove a global Carleman inequality for this problem under the hypothesis that the inner domain is strictly convex and a1 > a2. As a consequence of this inequality, uniqueness and Lipschitz stability are obtained for the inverse problem of retrie...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems
سال: 2008
ISSN: 1078-0947
DOI: 10.3934/dcds.2009.23.367